Objectives
- Students will understand how a unit square can be divided into an infinite number of pieces.
- Students will understand and justify the sum of an infinite geometric series.
- Students will be able to explain why the sum of an infinite geometric series is a finite number if and only if < 1.
- Students will try to make a connection with how to understand these topics in IB Mathematics courses and on their final assessments.
About the Lesson
In this activity, you will explore the concept of finding the sum of an infinite geometric series. Reviewing the concepts of when you can find the sum of an infinite geometric series will be the first task, discussing with your classmates not only what the characteristics of a geometric sequence are, but also the key characteristic that allows you to add every term of the infinite sequence and still get a non-infinite sum.
*Note: This activity includes optional IB support, including the IB Questions download for students who are preparing for the IB Exam.